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Abstract. In order to identify ineffective and, hence,
superfluous configurations in algorithmically generated
configuration spaces, a direct configuration interaction
(CI) method has been developed for determining com-
pletely general configurational expansions based on
arbitrary determinantal configuration lists. While based
on the determinantal ordering scheme of Knowles and
Handy, our direct CI algorithm differs from previous
ones by the use of the Slater—Condon expressions in direct
conjunction with single and double replacements. A full,
as well as a completely general selected, CI program has
been implemented. With it, full configuration spaces of
Ne, C,, CO and H,O with up to about 40 million
determinants have been investigated. It has been found
that, in all cases, fewer than 1% of the configurations in a
natural-orbital-based configuration expansion reproduce
the exact results within chemical accuracy.

Key words: Configuration interaction — Direct full
configuration interaction — Direct selected configuration
interaction — Configuration interaction expansion
truncation

1 Introduction

Expansions in terms of orbital-based configurations
have, as yet, remained the most common representations
of molecular electronic wavefunctions. Over the last
decades, formal as well as algorithmic advances in
conjunction with marked increases in computer power
have lead to effective treatments of large expansions so
that “‘chemical accuracy” can be approached more
closely, more reliably and for more complex systems.
Wavefunctions in full configuration spaces furnish, of
course, optimal descriptions in terms of given orbital
bases. These spaces, however, typically grow in size
roughly with the square of the binomial coefficient of the
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number of orbitals over the number of electrons, so
calculations become impractical as the number of
electrons and basis functions increases significantly
beyond those typical for moderately sized molecules.
Moreover, such expansions typically contain a great
number of configurations that are ineffective for any
given molecular electronic wavefunction. The separation
of ““deadwood” from “live wood” in full configurational
spaces is, therefore, a relevant problem.

Two different contexts must be distinguished. On the
one hand, full spaces were first practically used by one of
the authors in the context of full valence spaces, or full
“reactive’ subspaces thereof, in order to account prop-
erly for the electronic structure rearrangements during
chemical reactions within the zeroth-order approxima-
tion of the wavefunction (FORS model [1])'. This kind
of configuration mixing, due to so-called nondynamic
correlations, is difficult to anticipate and the reason for
using full spaces is thus to avoid building any bias into
the dominant part of the configurational expansion.

On the other hand, subsequent advances in the ease
of performing large full-space calculations owing to the
complete-active-space self-consistent-field (SCF) method
by Siegbahn and coworkers [2] have led to the use of this
approach beyond the zeroth-order approximations, viz.
also for the description of dynamic correlations. In this
case, it is, however, straightforward to home in on the
effective configurations by the consecutive inclusion of
single, double, triple, quadruple, etc., excitations from
suitable single-configurational or multiconfigurational
(MC) zeroth-order (“reference’) functions, in many
cases the Hartree—Fock approximation; however, even
here, the problem of distinguishing live wood from
deadwood in the excitation spaces remains.

To address this problem, a variety of approaches have
been conceived to generate configurational expansions
through iterative extensions of reasonable initial refer-
ence spaces, based on various premises, by the successive
inclusion of single and double excitations whose im-

"The configuration spaces treated were of dimensions up to about

1,800.
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portance is assessed by means of one or several threshold
criteria. In this context, we note the work of Gershgorn
and Shavitt [3], Bender and Schaefer and Brookes and
Schaefer [4], Huron et al. and Evangelisti et al. [5],
Buenker and coworkers [6], Meyer [7], Siegbahn [8],
Werner and Knowles [9], Harrison [10], Knowles and
Handy [11] and Mitrushenkov [12], which also contain
references to other contributors to this subject.

An up-to-date discussion of the variety of existing
configuration interaction (CI) methods, including addi-
tional original developments, has recently been pub-
lished by Sherrill and Schaefer [13]. For further specifics
and further literature, we refer the reader to this com-
prehensive review, which came to our attention after
completion of the present investigation.

In order to be free to pursue the most unbiased ex-
ploration of all promising selection criteria that could
lead to shorter configurational expansions, it would
seem desirable to be able to use an efficient CI method
and standalone code for the solution of CI problems that
are based on completely arbitrary large configurational
expansions without any built-in constraints, in particular
if notions of chemical bonding are to be taken into
consideration. It is to this end that we have developed
the direct determinantal general CI method discussed
here. The code has been incorporated in the GAMESS
program system [14] and it has also been linked to
MCSCEF orbital optimization programs.

The concept of a direct CI technique was introduced
by Roos [15]. The direct determinant-based full-space CI
(FCI) method goes back to Knowles and Handy [16].
Important further developments are due to Olson and
coworkers [17]. Additional modifications were contrib-
uted by Zarrabian and coworkers [18], by Bendalozzi,
and coworkers [19] and by Sherrill and Schaefer [13]. Our
algorithm differs from these methods in that we use nei-
ther the factorization of the second-order density in terms
of the unitary group generators nor its reduction to first
order densities by insertion of a resolution of the identity
in terms of a full configurational basis. Rather, we use the
standard Slater—Condon expressions directly in con-
junction with the generation of genuine single and double
excitations. This straightforward approach avoids the
addition and subtraction of unneeded terms whose in-
sertion had been motivated by considerations regarding
vectorization. No major degradation in efficiency appears
to result using current workstations and parallelization
looks promising. This methodological difference also
distinguishes the present work from the general CI code
of Povill and coworkers [20] which is embedded in the
CIPSI system of molecular programs [5].

To keep the presentation simple, we forego using the
unneeded second quantization notation. Some prereq-
uisite background is briefly collected in Sect. 2. The
basic equations and the corresponding generic loop
structures on which our codes are based are laid out in
Sect. 3. Direct procedures are described for several kinds
of configuration spaces in Sect. 4, leading to a general CI
procedure based on an arbitrary configuration list.
Applications to full configuration spaces of up to about
40 million configurations are reported for the systems
Ne, C,, CO and H,O in Sect. 5. The results exhibit the

performance of the codes as well as the great amount of
deadwood that is inherent in full configuration spaces
for very large orbital bases.

2 Basic determinantal CI framework

In the present section, prerequisite background basics
are briefly collected and choices made in our approach
are specified. The reader is referred to Ref. [13] for fuller
details and references regarding various topics.

2.1 Configurational expansion

In the CI approach, an electronic wavefunction is
expressed as a linear superposition

W= Cxdx
K
of configurations, @k, that are formed from a given set
of configuration generating molecular orbitals (CGOs),
L) =), v=1,2,....M
= dimension of the basis orbital space ,

(2.1)

(2.2)

that are obtained from the atomic orbital basis (y,) by
some optimizing transformation, typically through an
SCF or MCSCEF calculation. We assume the CGOs to be
orthonormal and use the ket notation for them.
Inclusion of all configurations that can be generated
results in the FCI wavefunction. Not all orbitals of the
full molecular orbital (MO) basis need be included in the
CGO set however, nor need all possible configurations
be included. The latter can be selected either on the basis
of some a priori formulated prescriptive algorithm or by
means of an explicitly given, and in principle arbitrary,
list of configurations. We shall use the term general CI
(GCI) wavefunction to denote the latter option, which is
our final focus.

The oldest and simplest antisymmetric basis config-
urations are the Slater determinants. Since most of them
are not eigenfunctions of S*, spin-adapted linear com-
binations of determinants, which yield somewhat shorter
CI expansions, have come into frequent use, in partic-
ular through the Graphical Unitary Group algorithm.
Knowles and Handy [16, 21] have, however, revived the
use of Slater determinants by showing that the extreme
simplicity of the MO-integral coupling coefficients in the
Hamiltonian matrix elements entails significant algo-
rithmic advantages in the context of the direct approach
and, since then, various modifications of this approach
have been developed [17-20].

From the conceptual point of view, determinants
moreover have the advantage of automatically yielding
information and insight regarding the states of all spin
multiplicities that are physically relevant in the energy
range of interest (provided that M is chosen to be equal
to 0 or 1/2 for an even or odd number of electrons,re-
spectively). This feature is assured by always dealing
with determinantal basis sets in which each collection of
space orbitals is associated in all possible ways with o and
p spin functions. Thereby, a reducible representation



basis of the symmetric group is generated and the
eigenfunctions of H will be eigenfunctions of S°.

2.2 Identification of determinants by string pairs

Since the correlation problem is considered within the
context of a spin-independent Hamiltonian, the wave-
function,¥, is an eigenfunction of S. and so are all
determinants, ®g, used for the expansion in Eq. (2.1).
Each determinant, has, therefore N, orbitals with o spin
and Ny orbitals with § spin such that

N, = (1/2)N +M,, Ny=(1/2)N — M, , (2.3)

where N is the total number of electrons and M is the
eigenvalue of S.. (In the subsequent algorithms, M, is
always assumed to be 0 or greater so that N, > Ng.)
Consequently, as pointed out by Handy [21] all deter-
minants of a specific problem can be written with the
same spin function in the form

O = A[@) DRor(1)or(2) - - 2 (N ) (N2 + 1PNy +2) -+
X B(N,+Ng=N)] , (2.4)

‘Dk = 4’}{1‘1’%2(2) e ¢;(,N7 (fo) )
Of = Py (No + 1) (No +2) - Py, (No + Ny = N)
(2.6)

where ®x and ®”x are called the o string and the f8
string of ®g, respectively.

The orbitals in both strings are taken from the same
orthonormal basis set (Eq. 2.2). By virtue of the anti-
symmetrization, all orbitals in the product @', must be
different from each other and can be chosen to occur in
the standard order established by Eq. (2.2) and the same
is true for the product ®x. The number of products
containing N, and Ny orbital factors, respectively, that
can be formed from the M basis orbitals of Eq. (2.2)
manifestly are

M M
we=(00) = (3)

so the full determinantal configuration space has the
dimension

ND = NP, x NPy . (2.8)

We denote the possible a- and f-string products of the
basis orbitals as

(2.5)

(2.7)

Ap=Iv(p1)IV(P2))[V(P3))----IV(PN)), p=1,2,....NP;,
(2.9)

By =|v(q1))Iv(g2))IV(g3))----[v(gNp)), ¢=1,2,...,NPg,
(2.10)

where the integer index functions

v=v(pj), j=1,2,....N, (2.11)

and

v=v(gn), n=12,...,Ng (2.12)
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furnish, respectively, the index of the orbital for electron
J in the product 4, and the index of the orbital for
electron (N,+n) in the product B, We reserve the
indices p, i, j, k for o strings and ¢, /, m, n for f strings.
Assuming unambiguous associations between the string
indices p, g and the corresponding orbital index sets in
the strings, every string pair {4,, B,} determines exactly
one determinant @ and, thus, the index couples (p, ¢)
furnish an alternative labeling of all determinants in a
full space, so one can write

®x = A{4, x B, x spinfunction}

=|p,q), p=12,...,.NP,, ¢g=12,... NPy .

(2.13)

2.3 Enumeration of determinants

The a- and f-string representation provides the basis for
a formalism that establishes the two-way connection
between the string labels p, ¢ on the left-hand side of
Eqgs. (2.9) and (2.10) and the corresponding orbital index
sets on the right-hand side of these equations, i.e. an
explicit algorithm implementing the index functions
(Egs. 2.11, 2.12). Different algorithms have been used
by different authors as discussed in Ref. [13], in partic-
ular with reference to vector computers. In view of our
objective to create a general direct CI code, we choose to
stay with the original enumeration scheme of Knowles
and Handy [16].

We describe the ordering for the products A4,, the
ordering algorithm for the B, being analogous. It is
illustrated in Table 1 for the case of M =6 and N, =3
so that v=1, 2, 3, 4, 5, 6 and j=1, 2, 3, whence
p=1,2 3 ..., NP, = 20. For each string label, p, listed
in the first column, the next three columns list the cor-
responding orbital index values v(pl), v(p2), v(p3). Two
algorithms will be needed: One to deduce the orbital
index set from the string index p, the other to deduce p

Table 1. Orbital product ordering for N, = 3, M = 6

p v(pl) v(p2) v(p3)
1 1 2 3
2 1 2 4
3 1 2 5
4 1 2 6
5 1 3 4
6 1 3 5
7 1 3 6
8 1 4 5
9 1 4 6

10 1 5 6

11 2 3 4

12 2 3 5

13 2 3 6

14 2 4 5

15 2 4 6

16 2 5 6

17 3 4 5

18 3 4 6

19 3 5 6

20 4 5 6
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(A) Setv(l,j)=jforj=1,2,....Ny
(B) Do forp=1,2....(NP,—1):
(C) Do fori=0,1,2,....,(No-1) :
(D) Isv(p, No-1)) =M-i?
If Yes :
Advance i—i+1 and return to (D)
IfNo :
Determine the v(p+1,j) as follows:
For j=1,2,...,(Ng-i-1) .
v(ptLj) =v(p,)
For j=(N¢-1),( Ng-it+1),..., Ny :
v(p+1,j) =v(p, No-1) + 1 +j — (No-)
Advance p—p+1 and return to (C)

Fig. 1. Orbital product ordering algorithm

from the orbital index set. The former consists of going
through the recursive sequence of logical steps formu-
lated in Fig. 1, generating the orbital products in the
order listed in Table 1, until p has reached the desired
value. Conversely, in order to deduce p from the orbital
index set, we obtain the formula

p[V(p, 1), V(p, 2)? SRR V(vax)]

N, v(p,i)—1 M— j
RIS +,(Na—z~> ,

=1 j=(pim1)

(2.14)

where v(p,0) is defined to be 0. Equation (2.14) appears
to be simpler than Eq. (11) in Ref. [16b].

The linear ordering and addressing of the determi-
nants @ furthermore requires a definition of the se-
quence in which one goes through the matrix of string
pairs (p, ¢g). This enumeration depends on the configu-
ration space considered and is discussed in Sect. 4; the
assertion of the existence of such an ordering algorithm,
K(p, ¢), suffices at this point. Through it, in conjunction
with the preceding string generation, the address index of
each determinant @ is algorithmically connected with
the indices of the orbitals in it. Hence, if the values of the
CI expansion coefficients, Cg, are listed in the order
given by K, no lists of orbital products need be kept.

2.4 Determination of CI coefficients

The vector, C, of the CI coefficients in Eq. (2.1) is
determined as a solution of the matrix eigenvalue
equation

HC = EC | (2.15)
Hy; = (g [H|D,) (2.16)

where H is the electronic Hamilton operator. The
eigenvectors of H must be determined by an iterative

procedure appropriate for very large sparse matrices and
various methods available are discussed in Ref. [13]. In
quantum chemical contexts, Davidson’s algorithm [22]
has generally been found to be the most effective and it is
also used in our code. In all methods, the essential
quantity that has to be calculated at each iterative
improvement step is the gradient vector, o, which is
obtained by the matrix multiplication

c=HC . (2.17)
In terms of the string-pair labeling of determinants, this
equation becomes

o(p.a) = 3.3 (pralHIrs)C(rs) (2.18)

where the (p, ¢) indexing has also been applied to o.

Operationally, the only MO-related quantities re-
quired for the solution of the CI problem are the one-
and two-electron energy integrals because it is from these
that the elements of the matrix H are constructed. The
complexities of this coupling process in conjunction with
the huge number of matrix elements are the causes for
the computational bottlenecks and the focus of the
direct algorithms.

If the MOs can be divided into core and active orb-
itals, the former being doubly occupied in all configu-
rations, then, as is well known, the explicit use of
integrals involving core orbitals can be avoided by ap-
propriate modifications of the integrals involving only
active orbitals and working out the energy contributions
involving only core orbitals ahead of the CI calculation.

A not irrelevant element of the iterative procedure is
the construction of a good initial guess for the solution
vectors of the various states desired in a particular
problem. We construct an initial guess for each CI vec-
tor by diagonalizing a Hamiltonian matrix H” in a small
space, typically of approximately 300 determinants. We
identify this space by choosing the determinants with the
lowest energies and, then, complementing them by those
additional determinants that are required to include, for
each space orbital selection, all admissible associations
with o« and f spin functions.

Our program allows the determination of several of
the lowest eigenvalues of H. The spin multiplicity of each
eigenvalue is determined by calculating the expectation
value of 8% using Dirac’s expression in terms of per-
mutations. It is not necessary to find the expectation
value of the entire CI vector, one needs only to take a
part of each eigenvector that encompasses all determi-
nants derived from one space orbital selection. We make
this selection from the determinants with the highest
coefficients.

3 Direct determinantal CI framework
3.1 Basic equations

In the direct method, the elements of H are computed on
the fly from the MO integrals so that they do not have
to be stored or repeatedly moved from memory to disk
and vice versa. This becomes possible by exploiting the



sparsity of the H matrix through explicit insertion of the
expressions of the H;x in terms of orbital integrals and
considering only nonvanishing matrix elements. We
choose the original Slater—Condon expressions [23] to
this end. Doing so in the operative Eq. (2.18) yields the
following explicit formulas in terms of orbitals:

o(p,q) = o1(p,q) + 62(p,q) + o3(p,q) + c4(p, q)
+05(p,q) + os(p,q)

with the six terms being the following expressions.

(3.1)

3.1.1 Diagonal elements

ci(p,q) = (p,qHlp,q)C(p,q) ,

(p.q/H|p,q)
= Z p)Iv(p)) +Z (qn)|h|v(gn))

+§:§:{ pi)v

= v(pi)v(pi)Iv(pi)v(p)l}
+ Y > A [v(gm)vigm)|v(gn)v(gn))

— [v(gm)v(gn)|v(gm)v(gn)]}
+ZZ v(pi)V(pi)lvign)vign)]

where the indices i, j, referring to « strings, run from 1 to
N, and the indices m, n, referring to f strings, run from 1
to Nﬂ

(3.2)

(pi)Iv(p)v(p))]

(3.3)

3.1.2 Single replacements in o strings

Here, the following notations are expedient: |[v¥*(p))=
all(M — N,) basis orbitals not contained in the product
A, i.e. for which

V' (p) # IV(2))),

r(pjv*) is the index of the string 4, that is obtained

i=1,2,....N, , (3.4)

from the string 4,by replacing the orbital |v(pj))
with the orbital |v*(p)) and then establishing the
standard orbital order of Eq. (2.2) in the replaced

product (3.5)

s(piv') = (£1

orbital permutation that brings the simply

), depending upon the parity of the

replaced product into the standard order of
r(pjv’)
We then have
G2 (p7 (])
=33 el ) (P a Ml ), ) Clrpv), )
j ooV

(3.7)

(3.6)
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(P, qMr(pjv’), q) = (Vi) AV (p))

+ > _ANE)vE)IvE)V ()]

i#]
— vpi)v(ph)Iv(pi)v'(p)]}
+ Z[V(qn)v(qnﬂv(l?j)v*(l?)] ;

(3.8)

where j runs from 1 to N,, i runs over the same values
with the exception of i =j, n runs from 1 to Ny, and
v¥*(p) runs over the values specified in Eq. (3.4).

3.1.3 Single replacements in f strings

In this case, we define the pf-string symbols \V*(q)>
s(qnv*) g(gnv*) with meanings analogous to those given
in Egs. (3.4), (3.5) and (3.6) for o strings. We then
obtain

G3 (p: q)

=2 2_&lanv)(p.qHlp,s(gnv'))Clp.s(gnv’)]

(3.9)

(P, q[Hlp, s(gnv")) = (v(gn)|hlv*(q))

+ > {[v(gm)v(gm)|v(gn)v*(q)]

m#n
— [v(gm)v(gn)|v(gm)v(q)1}

+ Z[v(pj)v(pj)|v(61n)\’*(61)] ;

(3.10)

where 7 runs from 1 to Ny, m runs over the same values
with the exception of m=n, j runs from 1 to N, and
v¥(g) runs over all basis orbitals not contained in the
string B,.

3.1.4 Double replacements in a strings
Here the following notations are useful.
[V*(p)), |n*(p)) both run over all (M — N,) basis
orbitals not contained in the
product 4,
r(pjkvi
obtained from the string 4, by replacing in it the
orbitals v(pj), v(pk) by the orbitals v*(p), " (p),
respectively (where j > k and v* > p*) and then

(3.11)

*) is the index of the string 4, (k) that is

establishing the standard orbital order in the

replaced product .

e(pjkvip’) = (£1
permutation that brings the replaced product into
the standard order of r(pjkvp®) . (3.13)

(3.12)

), depending upon the parity of the
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We then obtain
oulpg) =Y D > > elpikvii)
Jook<j voopr<vr

(p, qH|r(pjkv "), ¢) Clr(pjkvin’), ql
(3.14)

(p,a[HIr(pjkv'®), q) = [V(pj)v"(p)|v(Pk)w (p)]
— V@) () Ivpk)v (p)]
(3.15)

where j, k run from 1 to N, and v*, u* run over the
values specified in Eq. (3.11).

3.1.5 Double replacements in f§ strings

In this case, we define the f-string symbols [v¥(q)),
[L*(q)), s(gnmv*p*), e(gnmv*p*) with meanings analo-
gous to those given in Egs. (3.11), (3.12) and (3.13). We
then obtain

os(pq) = D> D> D> Y elgnmvy)

n m<n V' pr<v*

(p,alH|p, s(gnmv*p*))Clp, s(gnmv* )],
(3.16)

*

(p,qMlp,s(gnmv’n*)) = [v(gn)v

(@)Iv(gm)p*(q)]
— [v(gn)w*

(@)Iv(gm)v*(p)]
(3.17)

where n, m run from 1 to N g, and v*, u* run over all
basis orbitals not contained in the string B,.

3.1.6 Single replacements in both the o
and the f strings

Using again the notations employed in Egs. (3.4), (3.5),
(3.6), (3.7), (3.8), (3.9), (3.10), (3.11), (3.12) and (3.13) we
have

oulp.a) = 333 elpiv el

(p,qH|r(pjv*), s(gnw))Clr(pjv*), s(gnu”)]
(3.18)

(p, qH[r(pjv), s(gnn”)) = [v(p/)v* (p)Iv(gn)n*(q)]
(3.19)

where the index ranges are the same as in Egs. (3.7),
(3.8), (3.9) and (3.10).

3.2 Generic loop structure

Evaluation of the equations just given calls for the
repeated execution of the following operations:

1. Advancing sequentially through the indices p and ¢,
the orbital sets of the strings must be generated. The
orbital index sets for (p+ 1) and (¢+ 1) are obtained

from those for p and ¢ by using step C of the overall
algorithm displayed in Fig. 1.

2. For orbital products generated by single and double
orbital replacements, the appropriate string labels
must be found. This is done with Eq. (2.14).

3. In order to pick up the appropriate CI coefficient Cg
and to store the o(K), the address K(pg) must be
calculated from the string label pair (p, ¢). These
algorithms are discussed in Sect. 4.

The evaluation of Egs. (3.2), (3.3), (3.4), (3.5), (3.6),
(3.7), (3.8), (3.9), (3.10), (3.11), (3.12), (3.13), (3.14),
(3.15), (3.16), (3.17), (3.18) and (3.19) is then accom-
plished through the following sequence of operations,
which will serve as the reference for the discussions in
Sect. 4.

(0) Calculation of the diagonal elements (K| #'|K) =
(pq| A |\pq) before starting the iterations for solving the
eigenvalue problem.

(0.1) Loop over the alpha strings p, generate and store
the orbital index set for 4,. Evaluate and store the first
plus the third sum of Eq. (3.3), which do not depend
on the beta strings q.
(0.1.1) Loop through all beta strings g, generate the
orbital index sets for B,. Evaluate the fifth sum of
Eq. (3.3), add the previously stored value of the
first plus the third sum to it.
Add the total as a contribution into the diagonal
element (pq|#'|pg).

(0.2) Loop over the beta strings ¢, generate the orbital
index sets for B,. Evaluate and store the second plus
the fourth sum of Eq. (3.3), which do not depend on
the alpha strings p.
(0.2.1) Loop through the alpha strings p, without
generating the orbital index sets for 4.
Add the just found value of the second plus the
fourth sum to the previously found contributions
to the diagonal matrix element (pq|# |pq)=
(K|#°|K), all of which are kept stored throughout
all iterations. (They are not only required for the
calculation of o; but also in the CI solving
algorithm).

(1) Loop for o,

Loop over all K. Pick up and multiply the stored values
of (K|#|K) and C(K) yielding o,(K) = o,(p,q) accord-
ing to Eq. (3.2).

(2) Loop for o5, 64, Cg

Loop over the alpha strings p, generating and storing the
orbital index sets 4,. For each p:

(2.1) Loop for c,, o4

Loop over all single replacements |v(pj)) — [v¥(p)).
Determine and store r(pjv¥), e(pjv*), [v(p))), [V¥(p)).
Pick up the integrals in the first two lines of Eq. (3.8),
which do not depend on ¢; evaluate and store their
sum.

(2.1.1) Loop for o,

Loop over all g, generating the orbital index set for
each B,. Pick up the integrals in the third line of
Eq. (3.8); evaluate the sum and add to it the stored



sum of the first two lines of that equation. Pick up
e(pjv*) and Clr(pjv*), ql, evaluate Eq. (3.7).
Add the resulting contribution into c,(pq).
(2.1.2) Loop for o4
Loop over all additional single replacements
[v(pk)) — |u*(p)), with k> j, v¥>p*, thus yielding
the double alpha string replacements |v(pj)),
V(pk)) = [V¥(p)), (p)). Determine r(pjkv¥u*)
and e(pjkv*p*).
Pickup the integrals in Eq. (3.15), none of which
contain any beta-string orbitals, evaluate the
expression (3.15), multiply by e(pjkv*p*) and store.
(2.1.2.1) Loop over all ¢ without generating the
orbital index sets.
Multiply  the
Clr(pjkv*p*), ql.
Add the resulting contribution into c4(pq).
(2.2) Loop for og
Loop over all ¢, generating the orbital index set for
each B,. For each ¢:
(2.2.1) Loop over all single replacements |u(gn))—
IL*(q)). Determine s(gnu*), e(gnu*).
(2.2.1.1) Loop over all single alpha string
replacements r(pjv*), information about which
was stored at the beginning of loop (2.1). Using
this information, pick up the matrix element
(3.19). Pick up C(r(pjv*), s(gnu*)) and multiply
the four factors in Eq. (3.18). Add the resulting
contribution into Gg(p, q).

(3) Loop for os(p, q) and o5(p, q).

The calculation of these contributions is accomplished in
a manner analogous to the calculation of o,(p, ¢) and
o3(p, q) by appropriate inversion of the roles of p and ¢
and of the corresponding loops.

However, the values of o5(¢, p) and o5(¢g, p) do not have
to be evaluated explicitly for wavefunctions with My =0
because, in this case, one has N, = Ny and

just stored quantity by

Cp.g) = (-1)°Clg.p) , (3.20)
where S(S+1) = eigenvalue of %%, whence, as shown
by Olson,'”

o3(p,q) = (=1)o2(q.p) (3:21)
Gs (P7 q) = (_1)504(q7p) ) (322>
os(p,q) = (=1)os(qp) (3.23)

(4) Exploitation of matrix element symmetries
In order to reduce the computational effort, additional
loop refinements are introduced that take advantage of
the symmetry of the H matrix and the invariance of the
two-electron integrals [v,v'|u,u’] under eight manifest
orbital permutations. Exploitation of these equivalencies
allows, for instance, the following savings.
In loop 2.1, the single and double replacements can be
restricted to those for which the strings r(pjv¥*) as well
as r(pjkv*p*) follow the string p in the sequence
established by the algorithm of Fig. 1.
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In loop 2.2, the single replacement strings r(pjv*) and
s(gnp*) can be restricted to those that follow the
strings p and ¢ respectively, and the four contributions

e(r)e(s)(p.q| A |r,s)C(r.s)+e(p)e(q) (rs| A p.g)-C(p.q)
+e(p)e(s)(r.q| A |p,s)Cp.s)+&(r)e(q) (p.s| A |r.q) C(r.q)
=(p.q| A |r.s)[e(r)e(s)C(r,s)+e(p)e(q)C(p.q)
+e(p)e(s)C(p.s)+e(r)e(q)C(r.q)]
can be calculated at the same time.
In loop 3, similar refinements are introduced.
The computational effort can be further reduced by
storing additional information pertaining to single re-
placements. For larger systems, some of these lists can get
quite sizable however, eventually requiring disk storage.
With a view to our general CI as well as parallelization

objectives, we have chosen to use minimal storage of such
information.

(3.24)

4 Direct procedures for specific configuration spaces

We maintain the string generation introduced in
Sect. 2.3, as specified in Fig. 1, for all configuration
spaces discussed in the following. The differences in the
determinant enumerations for the different cases are
generated by means of the algorithms K(p, ¢) that
connect the matrix of string index pairs (p, ¢) with the
linear determinant ordering given by the index K. These
specifications, which we had postponed until now, are
formulated in the present section.

4.1 Full spaces without spatial symmetry

We begin by recalling the prototype of a full configu-
ration space without consideration of symmetry [16]. In
this case, a unique ordering of all determinants is
established by imagining all index pairs (p, ¢) arranged
in a matrix array and going through this matrix row by
row so that the determinant index K is defined by

K(p,q)=(p—1)NPs+¢g=1,2,...,ND , (4.1)
p=12,..NP,, g=1,2,... NP; , (4.2)

where NP,, NP; and ND are given by Egs. (2.7) and
(2.8), the latter being the dimension of the full determi-
nantal configuration space. Use of this relation in the
generic algorithm of Sect. 3.2 yields the direct procedure
for a full space with C; symmetry. Conversely, the string
indices (p, ¢) can be obtained from the determinant
index K by

p=nearestinteger > (K/NPy),g=K—(p—1)NPg, (4.3)

a relation not needed for the evaluation of o, but
required in applications where orbital structures have to
be established for determinants given by their index.

4.2 Spaces with Abelian space symmetry

The Abelian group D,, and its subgroups can be
generated by one, two or three of the generating
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elementary groups C,, o (reflection by a plane) and
i (inversion). Since each of the latter has two one-
dimensional irreducible representations with characters
+ 1, these Abelian groups have two, four or eight irreps,
respectively. The following discussion is couched in
terms of D,,, where we label the irreducible representa-
tions by I'=1, 2, 3,..., 8. Adaptation to the other
groups is trivial. An irrep multiplication table is
calculated and stored. A list of the irreps of all basis
orbitals is also stored in the sequence established by
Eq. (2.2).

Two orderings are used for the orbital strings. One,
referred to as the standard order, is the one discussed in
Sect. 2.3, which does not take into account symmetry
and, as before, is again labeled by p and ¢ respectively.
The second ordering, places all o strings of the same
irrep into one contiguous sequence, the ordering within
each of these sequences being that of their occurrence in
the standard ordering and the ordering of the irrep
sequences being that of the labels I" defined (arbitrarily)
in the preceding paragraph. An analogous second
ordering is used for the f strings. Let these symmetry
orderings of the o and f strings be labeled by indices p
and ¢, respectively, and let p(p) and ¢(q) denote the
integer functions that generate the symmetry orderings
from the standard orderings.

For the operational work with the function p (p), we
store lists of the following quantities

I'(p) = the irrep (1,2,...,8)of the string p, for each
p=12,...,NP, , (4.4)

P(I') = p of the first « string in the list of all those o

strings that belong to irrep I',for all T =1,2,...,8, (4.5)

op(p)

= the relative position of a string p within the list
of all those « strings that belong to the same irrep

I'(p), forallp=1,2,...,NP, . (4.6)
Hence, we have
p(p) =PIT(p)+p(p)—1 . (4.7)

We note that, for a given irrep T, the p run from P (T') to
[P(T'+ 1) —1] so that the corresponding values of 6p(p)
run from 1 to [P(T+ 1) =P (I')]. For any standard «
string index p, one can manifestly determine the value of
p(p) by first finding I'(p) from the list (Eq. 4.4) and then
p(p) from Eq. (4.7) and the lists (Egs. 4.5, 4.6). Anal-
ogous quantities I'(¢), O(T"), 0q(q) are similarly defined
for f strings.

In order to generate a linearly ordered list of ad-
dresses K for a symmetry-adapted determinantal basis,
we need a symmetry-adapted version of Eq. (4.1). To
this end, we define, for the problem at hand, the con-
jugate irrep T(I') of a given 1rrep I' as that irrep for
which the direct product I’ ® I'# is the irreducible rep-
resentation of the wavefunction ¥, and we store the list
of the eight conjugate irreps

r“r), r=12,..,8. (4.8)

Hence if, for any one determinant, p belongs to the
irrep T’ then ¢ must belong to the irrep I'*(T') and we
refer to these o and f strings as being mutually
conjugate. If we now imagine the symmetry string label
pairs (p, ¢) arranged in a matrix array, then the latter is
divided into 64 blocks corresponding to the row and
column irreps. Only for eight of them are the row and
column irreps conjugate as given by Eq. (4.8), however,
and we call them the conjugate blocks. The order of the
symmetry-adapted determinants is then defined by
going through this matrix row by row and selecting
only string pairs from conjugate blocks. By virtue of
the meanings of the quantities discussed in Egs. (4.4),
(4.5), (4.6) and (4.7) and the analogous f-string
quantities, the address K of the symmetry-adapted
determinant formed from the conjugate strings p and ¢
is then defined by

k(p,q) :k(ﬁ’Q)
:ZWHM

+[0p(p) = DJIQ(T* + 1) — O(T*

— PO +1) — O(T")]

) +04(q)
(4.9)

where T'=T(p), > , runs over the irreps y from 1
to [I'(p) — 1] and ¢(g) is restricted to the block conjugate
to p.

It is in the order given by the index K, that the CI
coefficients as well as the components of the gradient
vector o are listed, implying the indexing o(K ), C(K)
and a list that is shorter than the full list by approxi-
mately a factor of 8 (for D,,).

In the actual calculation of &, we still go through the
generic loop structure of Sect. 3.2 in terms of the standard
labels p and ¢. At each stage, however, certain symmetry-
related tests and selections are inserted as follows.

(0) Diagonal elements

(0.1.1) Loop over q:

e Only those ¢ are selected that are conjugate to p.
(Although these ¢’s are not contiguous in the standard
list, they do occur in the sequence of the standard
order for a given p. Hence, the orbital indices of these
beta strings are generated by what amounts, in total,
to only one partial sweep through the algorithm of
Figure 1 for each p).

(0.2.1) Loop over p:

e Only those p are selected that are conjugate to ¢.

(1) Loop for o,

No tests are necessary.

(2) Loop for 65, G4, Cg.
(2.1) Loop for ©,, o4.
e Determine and store the irrep of the product
V(D) X IVH(p)).
If it is not the identity skip to loop (2.1.2). Only if it is
the identity, calculate the first two lines of Eq. (3.8)
and proceed to loop (2.1.1).

(2.1.1) Loop for c,:
Only those ¢ are chosen for which ¢ is conjugate to
D.



(2.1.2) Loop for oy:
e Only those double replacements are chosen for
which the orbital product |v(pk)) X |p*(p)) belongs
to the same irrep as the previously stored irrep of
the orbital product [v(pj)) X [v¥(p)).
(2.1.2,1) e Choose only those ¢ for which ¢ is
conjugate to p .

(2.2) Loop for cg:

e Use of the refinements that exploit the equivalencies
discussed in connection with Eq. (3.24) requires
looping through single replacements from all g.

eIn Eq. (3.19), only those two-electron integrals
[v(p)v¥(p) | v(gn)p*(q)] are selected for which the
product of the orbitals for electron 1 belongs to the
same irrep as the product of the orbitals for electron 2.
e Accordingly, only the corresponding coefficients
C(r( pjv*), s(gnu*)) are picked up for Eq. (3.18).

e Only pairs (pg), (ps), (rq), (rs) containing conjugate
strings are picked up.

4.3. General configuration spaces

Configuration spaces spanned by arbitrary selections of
determinants from full spaces require storage of explicit
configuration lists as an input. Such a configuration list
can be given by a set of (p, ¢) pairs and can be viewed as
a collection of certain elements in the full (p, ¢) matrix. It
is expedient to use two orderings for the selected given
determinants, corresponding to going through the (p, ¢)

Table 2. Example of an arbitrary selection of string pairs

First ordering

K 12 3 45 6 7 8 9 10 11 12 13 14

p L1 1 22 2 2 4 4 7 7 7 7 7

g 46 8 2 7 8 92 4 1 2 4 6 7
Second ordering

K 12 3 4 6 7 8 9 10 11 12 13 14

p 72 4 71 4 71 7 2 7 1 2 2

g 1 2 2 2 4 4 6 7 7 8 8 9

Cross-reference list
K 12 3 4 5 6 7 8
K10 4 8 11 1 9 12 2 13 5 14 3 6 7
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matrix by rows or by columns. We denote the two
orderings by the determinant indices K and K’, respec-
tively and they are illustrated for an arbitrary example in
Table 2. For both orderings, a p list and a ¢ list are
stored, each one in the order of the pertinent
determinant index, viz. K or K’, respectively. Also stored
is the cross-reference list shown in Table 2 which
furnishes the index K(K’) for each K'.

It is furthermore useful to define two additional
quantities, Ko(p) and AK(p), pertaining to the o strings
in the first ordering, where Ky(p) is the position of the
first determinant K associated with p and AK(p) is the

4 GCI FCI
b
3 4
P .
=
5]
g 2-
5
% -1
£
& 14
—
4 HO
04 { ¢ Ne
v CO
. ° C2
-1 ——— 77 ——————
2 3 4 5 6 7 8

Log(No. of Determinants)

Fig. 2. Scaling of direct configuration interaction (CI) algorithm
with dimensions of determinantal configuration spaces. Full
configuration spaces (FCI); truncated configuration spaces (GCI)

Table 3. Performance of full-space configuration interaction (FCI) code

System Basis set and N¢, Nev®  Number of Excr ECORRb Time per Number of
number of determinants iteration (s)° iterations!
atomic orbitals

H,O Dz° (14) 0,0 1,002,708 —76.15572691 —0.14645452 60 12

Ne cc-pVDZ+" (18) 0,0 9,185,280 —128.68519268 —0.19354066 859 11

CO Dz° (20) 2,0 18,367,552 —112.89542617 —-0.21037202 2,378 14

C, DZP¢ (30) 2,1 38,505,148 —75.72901005 —-0.33953192 7,080 23

Number of frozen-core orbitals, Number of omitted highest virtual self-consistent-field orbitals

b _
Ecorr = Erct — Escr

¢ Using an IBM 43P-260 workstation. Subsequent improvements have cut these times in half. For instance, 34 s for H,O
4Number of iterations required for the absolute value of the CI gradient to fall below 1.0 x 107>

°Ref. [24]
TRef. [25]
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Table 4. Performance of general CI code

System Number of Percentage EGgcr — Escr Erct — Egcr Percentage Time per Number of
determinants full space® Ecorr’ iteration (s)° iterations®
H,O 345 0.034 —0.13673502 —0.00971950 93.3635 0.2 6
3,604 0.36 —0.14559551 —0.00085901 99.4135 1 13
16,930 1.69 —0.14635340 —-0.00010112 99.9310 6 15
33,125 3.30 —0.14642871 —0.00002581 99.9824 15 16
68,366 6.89 —0.14644924 —0.00000528 99.9964 42 16
175,032 17.46 —0.14645410 —0.00000042 99.9997 179 17
344,558 34.36 —0.14645448 —0.00000004 ~100.00 567 17
613,230 61.16 —0.14645452 —0.00000000 ~100.00 1,605 17
1,002,708 100.00 —0.14645452 —0.00000000 ~100.00 3,987 10
Ne 236 0.0026 —0.18668171 —0.00685895 96.4561 0.26° 6°
4,361 0.047 —0.19300268 —0.00053798 99.7220 2 8
17,237 0.19 —0.19350025 —0.00004041 99.9791 10 9
35,383 0.39 —0.19353057 —-0.00001009 99.9948 26 10
78,654 0.86 —0.19353828 —-0.00000238 99.9988 76 10
127,479 1.39 —0.19353996 —0.00000070 99.9996 152 10
261,604 2.85 —0.19354055 —0.00000011 99.9999 466 10
555,539 6.05 —0.19354065 —0.00000001 ~100.00 1,646 10
CcO 310 0.0017 —0.18127379 —0.02909823 86.1682 0.7 7
3,784 0.021 —0.20518499 —-0.00518703 97.5344 2 11
20,975 0.11 —-0.20910165 —-0.00127037 99.3961 19 13
43,404 0.24 —0.20981241 —0.00055961 99.7340 51 13
87,035 0.47 —0.21014620 —0.00022582 99.8927 132 14
163,544 0.89 —-0.21027989 —-0.00009213 99.9562 323 14
324,249 1.77 —0.21034206 —0.00002996 99.9858 908 14
594,890 3.24 —-0.21036276 —0.00000926 99.9956 2,422 14
C, 335 0.00087 —0.27876569 —-0.06076623 82.1029 0.8 9
3,637 0.0094 —0.32406160 —0.01547032 95.4436 3 14
21,479 0.055 —0.33518350 —0.00434842 98.7193 30 17
43,437 0.11 —-0.33707515 —-0.00245677 99.2764 79 17
88,747 0.23 —0.33827150 —0.00126042 99.6288 208 17
169,681 0.44 —0.33889054 —0.00064138 99.8111 504 17
341,034 0.89 —0.33925925 —-0.00027267 99.9197 1,337 18
625,862 1.62 —0.33941737 —-0.00011455 99.9663 3,306 18
1,090,942 2.83 —0.33948604 —0.00004588 99.9865 7,956 18

;Percentage of full-space determinants taken in the general CI
Y% Ecorr = (Egc1 — Escr)/(Erct — Escg) X 100

°On an IBM 43P-260 workstation. Subsequent improvements have cut these times in half
9 Number of iterations required for the absolute value of the CI gradient to fall below 5.0 x 107

¢Initial guess taken with a space of 200 determinants

number of ¢ values associated with p. Similarly, two
analogous quantities Kjand AK’(¢) are defined pertain-
ing to the f strings in the second ordering.

If the system has symmetry, then a list of the irre-
ducible representations of all orbitals is stored and, by
means of prior screening, it is furthermore assured that
for each determinant position, K, the f§ string ¢ is con-
jugate to the o string p. Care must also be taken that the
list spans a representation of the symmetric group so
that the eigenfunctions of H will be eigenfunctions of S°.
If a list has been obtained by configurational truncation,
say, the program examines the input list and, if neces-
sary, complements it so that all possible determinants
are included for each selection of space orbitals. These
additions may enlarge the list markedly.

In the actual calculation of o, we still use the generic
loop structure of Sect. 3.2 in terms of the standard labels
p and ¢; however, in order to ascertain that only those
determinants are considered that are in fact in the list,
appropriate tests and selections are inserted at each stage
of the outline in Sect. 3.2. as follows.

(0) Diagonal elements
(0.1) Loop over p
e Evaluate and store the contribution to Eq. (3.3)
only for those p that are in the list of the first ordering.
(0.1.1) Loop over g
e Evaluate and store the contributions to Eq. (3.3)
only for those ¢ that are associated with p in the
first ordering.
(0.2) Loop over g
e Evaluate the contributions to Eq. (3.3) and add
them into (pg|# |pq) only for those ¢ that are in the
list of the second ordering.
(0.2.1) Loop over p
e Add the just found contribution only for those p
that are associated with ¢ in the list of the second
ordering.
(1) Loop for o,
No tests are necessary.
(2) Loop for c,, G4, O
e Only for those p that are in the p list pertaining to the
first ordering:
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Store the orbital index sets for A,; determine and store
Ko(p), AK(p), and proceed to go through the loops (2.1)
and (2.2).
(2.1) Loop for ©,, o4
e In addition to r(pjv¥), (v, v(p))), [V¥(QP)),
determine and store also the irrep of the product of
the two orbitals as well as Ko[r(pjv*)] and AK[r(pjv*)].
o If r(pjv*) is not in the p list of the first ordering or if
the product irrep is not the identity, skip to loop (2.1.2)
for o4, otherwise:
Pick up the first two lines of Eq. (3.8) and proceed to
loop (2.1.1) for o©,.
(2.1.1) Loop for c,
e Loop only over all those ¢ values that are
associated with the alpha string p as well as with
the alpha string r(pjv*).
(2.1.2) Loop for o4
o If the irrep of the product {|v(pk)) x |u*(p))}
differs from that of the product {|v(pj)) x [v*(p))},
go to next additional replacement of p.
If it is identical, determine r(pjkv*p*)and look
whether r(pjkv*u*) is in the p-list of the first
ordering.
If not, go to the next additional replacement of p.
If it is: Determine e(pjkv*p*) and Ko[r(pjkv*p*)].
(2.1.2.1) ® Loop only over those ¢ values that are
associated with the alpha string p as well as with
the alpha string r(pjkv*p*).
(2.2) Loop for og
e Loop through all ¢ values associated with the alpha
string p, as specified by the information stored at the
beginning of loop (2).
(2.2.1) o If the irrep of the product |[u(gn)) % [u*(g))
differs from that of the product |[v(p))) X [v¥(p)),

Fig. 3. Energy convergence of truncated CI
expansions in terms of natural-orbital-based
configurations

1
-1 0

skip to the next single replacement of ¢. If it is the
same, determine s(gnp*), e(gnu*).

® By comparison with the information stored at the
beginning of loop (2.1), determine whether the
beta string s(gnpu*) is among those beta strings that
are associated with the alpha string r(pjv¥*) in the
first ordering. If it is not, skip to the next single
replacement of g.

If it is: Proceed with the evaluation of the
contribution to c4(p, ¢).

(3) Loop for o3 and o5:

These calculations are analogous to those described for
o, and o4 under loops (2) and (2.1) above, except that
the roles of p and ¢ are reversed and the lists associated
with the second string ordering are used in conjunction
with the cross reference list of Table 2. Eq. (3.20), (3.21),
(3.22) and (3.23), still hold so that 3 and 65 do not have
to be evaluated when M =0.

5 Identification of deadwood in some large full spaces

The algorithms outlined in Sect. 4 have been imple-
mented in a direct CI code, named JAKAL, which has
also been incorporated in the GAMESS program system
maintained by M.S. Gordon and M.W. Schmidt [14].

5.1 Full configuration space calculations with C,
and D, symmetry

So far we have applied the full CI code to problems
including up to 140 x 10° determinants. An account of
its performance is presented in Table 3, which contains
the results for the ground states of the four systems H,O,



350

Ne, CO and C,, with full-space dimensions from 1 X 10°
to 40 x 10° determinants. The table lists the specifica-
tions for the various cases, the energy results and the
execution times using an IBM43P-260 workstation.
Refinements of the code since these test cases were run
have resulted in a general decrease in the execution times
by about a factor of 2. It would appear that the
straightforward use of the Slater—Condon [23] expres-
sions for the second-order density, without the factor-
ization in terms of unitary group generators or the
insertion of an identity decomposition, does not entail a
major degradation in performance.

The scaling of the code with the size of the full con-
figuration space is illustrated by the curve labeled FCI in
Fig. 2, which exhibits the decimal logarithm of the exe-
cution time per iteration as a function of the decimal
logarithm of the number of determinants for these cases.
It is very close to a straight line with a least-mean-
squares slope of 1.30. The reason for it being less than 2,
the anticipated scaling for the eigenvalue problem of a
full matrix, is presumably a combination of the sparsity
of the H matrix, the savings inherent in the direct
method and the efficiency of the implementation.

5.2 Truncated configuration space calculations

For each of the four systems, we determined natural
orbitals and then redetermined the natural-orbital-based
CI coefficients. The determinants were then rearranged
in the order of their importance, as given by the absolute
value of their CI coefficients and selected lists of
configurations were obtained as follows. The X most
important determinants were taken and added to them
were the least number of determinants needed so that
every space orbital selection was coupled in all possible
ways with the spin functions « and f, as explained at the
end of the third paragraph of Sect. 4.3. For each system,
expansions for several values of X were examined. The
truncated CI expansions were then determined with the
general CI version of the JAKAL code.

Details of the results are presented in Table 4. We
note that, in the calculations reported, we did not re-
duce the basis set of the natural orbitals by deleting
those natural orbitals that are unoccupied in all deter-
minants selected for a given choice of X. Since these
calculations were performed, improvements in the im-
plementation have resulted in cutting the typical exe-
cution time in half and further improvements are
currently under way.

The scaling of these calculations is exhibited by the
curves labeled GCI in Fig.2, which plot the decimal
logarithm of the execution time per iteration versus
the decimal logarithm of the number of determinants
used. They are seen not only to scale similarly with a
relative increase in the number of determinants, but
even to lie very close to ecach other on an absolute
scale. With increasing number of determinants, they
become close to straight lines, with a common least-
mean-squares slope slightly higher than that of the
FCI curve.

That GCI calculations are more time consuming
than FCI calculation for the same number of deter-
minants is manifestly due to the great amount of
checking that is required in every loop, which entails a
loss in efficiency. This can be avoided, of course, when
it is possible to generate the truncated expansion by
an algorithmic enumeration that renders checks un-
necessary. Whether the storage of more string infor-
mation would be beneficial in this context is not
obvious. It is conceivable that, for shorter CI expan-
sions, the memory required to do so would exceed
that for the CI vector itself.

5.3 Comparison of full and truncated spaces

It is seen from Table 4 that for H,O, Ne, CO and C,,
respectively, more than 99.9% of the correlation energy
is obtained by taking only 1.69, 0.19, 0.89, and 0.89%,
respectively, of the full space.

Figure 3 exhibits plots of the decimal logarithm of the
energy errors due to truncation (equal to the energy
difference between FCI and GCI calculations) versus the
decimal logarithm of the truncation fractions (equal to
the number of truncated space determinants divided by
the number of full space determinants). These curves
exhibit the speed of convergence of the natural-orbital-
based CI expansions. It is apparent that, for H,O, Ne,
CO and C,, the truncation error in the energy falls below
the chemical accuracy criterion of 1 mhartree with ap-
proximately 0.3, 0.03, 0.1 and 0.3% respectively, of the
full space.

Of interest is also the size of the truncated space as a
percentage of the full space for which the execution time
per iteration of the GCI calculations becomes equal to
that of FCI calculation. For H,O, Ne, CO and C,, this
occurs at 6.9, 2.9, 1.8 and 1.6%, of the respective full
spaces and results in absolute errors of 5x 1073,
1x107% 3x 107 and 1 x 107" mhartree, respectively,
corresponding to a recovery of 99.9964, 99.9999, 99.9858
and 99.9663% of the correlation energy, respectively,.
This is encouraging, especially for a system like C,,
where the basis contains d functions and the dominant
determinant has a coefficient of 0.83.

5 Conclusions

A new direct determinantal CI procedure has been
developed for full as well as arbitrarily selected config-
uration expansions and it has been implemented by an
efficient workstation code. With it, a quantitative
assessment has been obtained for the fraction of large
full configuration spaces that must be considered as
deadwood for the recovery of dynamic correlation. The
program should be useful for experimentation with
unconventional CI spaces aiming at the recovery of
sufficient parts of the correlation energy with a minimum
amount of configurational deadwood. We also plan to
use it for the theoretical analysis of molecules in terms of
atomic building blocks.
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